Dr. Tatsuya Shinagawa

ETH Hönggerberg
Vladimir-Prelog-Weg 1
CH-8093 Zurich

tel: +41 4463 34235

    Back to team

    CO2 valorization

    The realization of sustainability requires extensive use of renewable energy sources; and the generated electricity therein has to be effectively used for converting thermodynamically stable chemicals, namely water and carbon dioxide, to achieve sustainable energy and material circulation in our society. To this end, the development of catalytic processes driven by electricity is of great significance. My research interests include electrocatalysis, particularly water splitting and CO2 reduction, as well as thermal catalysis for C1 chemistry.


    Post-doctoral researcher in the group of Prof. Pérez-Ramírez, ETH Zürich, Switzerland

    2013-2017 Ph.D., King Abdullah University of Science and Technology, Saudi Arabia
    2011-2013 Master of Engineering, Waseda University, Japan
    2007-2011 Bachelor of Engineering, Waseda University, Japan
    • An oxygen-insensitive hydrogen evolution catalyst coated by a molybdenum-based layer for overall water splitting
      A. T. Garcia-Esparza, T. Shinagawa, S. Ould-Chikh, M. Qureshi, X. Peng, N. Wei, D. H. Anjum, A. Clo, D. Nordlund, T.-C. Weng, D. Sokaras, J. Kubota, K. Domen, K. Takanabe
      Angew. Chem. Int. Ed. 2017, 56, 5780-5784 (doi:10.1002/anie.201701861)
      Angew. Chem. 2017, 129, 5874-5878 (doi:10.1002/ange.201701861)
    • Boosting the oxygen evolution reaction performance of Ni by simple electrochemical activation
      T. Shinagawa, M. Tze-Kiat Ng, K. Takanabe
      Angew. Chem. Int. Ed. 2017, 56, 5061-5065 (doi:10.1002/anie.201701642)
      Angew. Chem. 2017, 129, 5143-5147 (doi:10.1002/ange.201701642)
    • Towards versatile and sustainable hydrogen production via electrocatalytic water splitting: Electrolyte engineering
      T. Shinagawa, K. Takanabe
      ChemSusChem 2017, 10, 1318-1336 (doi:10.1002/cssc.201601583)
    • Photophysics and electrochemistry relevant to photocatalytic water splitting involved at solid-electrolyte interfaces
      T. Shinagawa, Z. Cao, L. Cavallo, K. Takanabe
      J. Energy Chem. 2017, 26, 259-269 (doi:10.1016/j.jechem.2016.07.007)
    • Generation of transparent oxygen evolution electrode consisting of regularly-ordered nanoparticles from self-assembly cobalt phthalocyanine as a template
      A. Ziani, T. Shinagawa, L. Stegenburga, K. Takanabe
      ACS Appl. Mater. Interfaces 2016, 8, 32376-32384 (doi:10.1021/acsami.6b12006)
    • New insight into the hydrogen evolution reaction under buffered near-neutral pH conditions: enthalpy and entropy of activation
      T. Shinagawa, K. Takanabe
      J. Phys. Chem. C 2016, 120, 24187-24196 (doi:10.1021/acs.jpcc.6b07954)
    • Enhanced kinetics of hole transfer and electrocatalysis during photocatalytic oxygen evolution by cocatalyst tuning
      E. Nurlaela, H. Wang, T. Shinagawa, S. Flanagan, S. Ould-Chikh, Z. Mics, P. Sautet, T. L. Bahers, E. Cánovas, M. Bonn, K. Takanabe
      ACS Catal. 2016, 6, 4117-4126 (doi:10.1021/acscatal.6b00508)
    • A miniature solar device for overall water splitting consisting of series-connected spherical silicon solar cells
      Y. Kageshima, T. Shinagawa, T. Kuwata, J. Nakata, T. Minegishi, K. Takanabe, K. Domen
      Sci. Rep. 2016, 6, 24633 (doi:10.1038/srep24633)
    • Temperature dependence of electrocatalytic and photocatalytic oxygen evolution reaction rate using NiFe oxide
      E. Nurlaela, T. Shinagawa, M. Qureshi, D. S. Dhawale, K. Takanabe
      ACS Catal. 2016, 6, 1713-1722 (doi:10.1021/acscatal.5b02804)
    • Electrolyte engineering toward efficient hydrogen production electrocatalysis with oxygen-crossover regulation under densely buffered near-neutral pH conditions
      T. Shinagawa, K. Takanabe
      J. Phys. Chem. C 2016, 120, 1785-1794 (doi:10.1021/acs.jpcc.5b12137)
    • Electrocatalytic hydrogen evolution under densely buffered neutral pH conditios
      T. Shinagawa, K. Takanabe
      J. Phys. Chem. C 2015, 119, 20453-20458 (doi:10.1021/acs.jpcc.5b05295)
    • Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion
      T. Shinagawa A. T. Garcia-Esparza, K. Takanabe
      Sci. Rep. 2015, 5, 13801 (doi:10.1038/srep13801)
    • Identification of intrinsic catalytic activity for electrochemical reduction of water molecules to generate hydrogen
      T. Shinagawa, K. Takanabe
      Phys. Chem. Chem. Phys. 2015, 17, 15111-15114 (doi:10.1039/C5CP02330K)
    • Impact of solute concentration on the electrocatalytic conversion of dissolved gases in buffered solutions
      T. Shinagawa, K. Takanabe
      J. Power Sources 2015, 287, 465-471 (doi:10.1016/j.jpowsour.2015.04.091)
    • Mechanistic switching by hydronium ion activity for hydrogen evolution and oxidation over polycrystalline platinum disk and platinum/carbon electrodes
      T. Shinagawa, A. T. Garcia-Esparza, K. Takanabe
      ChemElectroChem 2014, 1, 1497-1507 (doi:10.1002/celc.201402085)
    • Low temperature catalytic reverse water gas shift reaction assisted by an electric field
      K. Oshima, T. Shinagawa, Y. Nogami, R. Manabe, S. Ogo, Y. Sekine
      Catal. Today 2014, 232, 27-32 (doi:10.1016/j.cattod.2013.11.035)
    • Evaluation of catalytic electrical conduction with an AC impedance method for catalytic reaction in plasma
      K. Oshima, Y. Tanaka, T. Shinagawa, Y. Sekine
      J. Inst. Electrostat. Jpn. 2013, 37, 8-13
    • Methane conversion assisted by plasma or electric field
      K. Oshima, T. Shinagawa, Y. Sekine
      J. Jpn. Petrol. Inst. 2013, 56, 11-21 (doi:10.1627/jpi.56.11)
    • Low temperature hydrogen production by catalytic steam reforming of methane in an electric field
      K. Oshima, T. Shinagawa, M. Haraguchi, Y. Sekine
      Int. J. Hydrogen Energy 2013, 38, 3003-3011 (doi:10.1016/j.ijhydene.2012.12.069)
    • Low temperature natural gas conversion using electric discharge/electric field
      Y. Sekine, K. Tanaka, K. Oshima, T. Shinagawa
      J. Jpn. Inst. Energy 2012, 91, 875-879